Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.

Identifieur interne : 000234 ( Main/Exploration ); précédent : 000233; suivant : 000235

Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.

Auteurs : Michael J. Holmes [États-Unis] ; Premal Shah [États-Unis] ; Ronald C. Wek [États-Unis] ; William J. Sullivan [États-Unis]

Source :

RBID : pubmed:31167946

Descripteurs français

English descriptors

Abstract

Toxoplasma gondii is a ubiquitous obligate intracellular parasite that infects the nucleated cells of warm-blooded animals. From within the parasitophorous vacuole in which they reside, Toxoplasma tachyzoites secrete an arsenal of effector proteins that can reprogram host gene expression to facilitate parasite survival and replication. Gaining a better understanding of how host gene expression is altered upon infection is central for understanding parasite strategies for host invasion and for developing new parasite therapies. Here, we applied ribosome profiling coupled with mRNA measurements to concurrently study gene expression in the parasite and in host human foreskin fibroblasts. By examining the parasite transcriptome and translatome, we identified potential upstream open reading frames that may permit the stress-induced preferential translation of parasite mRNAs. We also determined that tachyzoites reduce host death-associated pathways and increase survival, proliferation, and motility in both quiescent and proliferative host cell models of infection. Additionally, proliferative cells alter their gene expression in ways that are consistent with massive transcriptional rewiring, while quiescent cells were best characterized by reentry into the cell cycle. We also identified a translational control regimen consistent with mechanistic target of rapamycin (mTOR) activation in quiescent cells and, to a lesser degree, in proliferative cells. This study illustrates the utility of the method for dissection of gene expression programs simultaneously in the parasite and host.IMPORTANCEToxoplasma gondii is a single-celled parasite that has infected up to one-third of the world's population. Significant overhauls in gene expression in both the parasite and the host cell accompany parasite invasion, and a better understanding of these changes may lead to the development of new therapeutic agents. In this study, we employed ribosome profiling to determine the changes that occur at the levels of transcription and translation in both the parasite and the infected host cell at the same time. We discovered features of Toxoplasma mRNAs that suggest a means for controlling parasite gene expression under stressful conditions. We also show that differences in host gene expression occur depending on whether they are confluent or not. Our findings demonstrate the feasibility of using ribosomal profiling to interrogate the host-parasite dynamic under a variety of conditions.

DOI: 10.1128/mSphere.00292-19
PubMed: 31167946
PubMed Central: PMC6553554


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.</title>
<author>
<name sortKey="Holmes, Michael J" sort="Holmes, Michael J" uniqKey="Holmes M" first="Michael J" last="Holmes">Michael J. Holmes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shah, Premal" sort="Shah, Premal" uniqKey="Shah P" first="Premal" last="Shah">Premal Shah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genetics, Rutgers University, Piscataway, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Rutgers University, Piscataway, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wek, Ronald C" sort="Wek, Ronald C" uniqKey="Wek R" first="Ronald C" last="Wek">Ronald C. Wek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sullivan, William J" sort="Sullivan, William J" uniqKey="Sullivan W" first="William J" last="Sullivan">William J. Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31167946</idno>
<idno type="pmid">31167946</idno>
<idno type="doi">10.1128/mSphere.00292-19</idno>
<idno type="pmc">PMC6553554</idno>
<idno type="wicri:Area/Main/Corpus">000261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000261</idno>
<idno type="wicri:Area/Main/Curation">000261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000261</idno>
<idno type="wicri:Area/Main/Exploration">000261</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.</title>
<author>
<name sortKey="Holmes, Michael J" sort="Holmes, Michael J" uniqKey="Holmes M" first="Michael J" last="Holmes">Michael J. Holmes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shah, Premal" sort="Shah, Premal" uniqKey="Shah P" first="Premal" last="Shah">Premal Shah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genetics, Rutgers University, Piscataway, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Rutgers University, Piscataway, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wek, Ronald C" sort="Wek, Ronald C" uniqKey="Wek R" first="Ronald C" last="Wek">Ronald C. Wek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sullivan, William J" sort="Sullivan, William J" uniqKey="Sullivan W" first="William J" last="Sullivan">William J. Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cells, Cultured (MeSH)</term>
<term>Fibroblasts (parasitology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Humans (MeSH)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Protozoan Proteins (genetics)</term>
<term>RNA, Messenger (MeSH)</term>
<term>Ribosomes (genetics)</term>
<term>Toxoplasma (genetics)</term>
<term>Toxoplasma (physiology)</term>
<term>Transcriptome (MeSH)</term>
<term>Vacuoles (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cadres ouverts de lecture (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Fibroblastes (parasitologie)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Protéines de protozoaire (génétique)</term>
<term>Ribosomes (génétique)</term>
<term>Toxoplasma (génétique)</term>
<term>Toxoplasma (physiologie)</term>
<term>Transcriptome (MeSH)</term>
<term>Vacuoles (parasitologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Parasite Interactions</term>
<term>Ribosomes</term>
<term>Toxoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Protéines de protozoaire</term>
<term>Ribosomes</term>
<term>Toxoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Fibroblastes</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Fibroblasts</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Toxoplasma</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Toxoplasma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Gene Expression Profiling</term>
<term>Humans</term>
<term>Open Reading Frames</term>
<term>RNA, Messenger</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN messager</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Cadres ouverts de lecture</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Toxoplasma gondii</i>
is a ubiquitous obligate intracellular parasite that infects the nucleated cells of warm-blooded animals. From within the parasitophorous vacuole in which they reside,
<i>Toxoplasma</i>
tachyzoites secrete an arsenal of effector proteins that can reprogram host gene expression to facilitate parasite survival and replication. Gaining a better understanding of how host gene expression is altered upon infection is central for understanding parasite strategies for host invasion and for developing new parasite therapies. Here, we applied ribosome profiling coupled with mRNA measurements to concurrently study gene expression in the parasite and in host human foreskin fibroblasts. By examining the parasite transcriptome and translatome, we identified potential upstream open reading frames that may permit the stress-induced preferential translation of parasite mRNAs. We also determined that tachyzoites reduce host death-associated pathways and increase survival, proliferation, and motility in both quiescent and proliferative host cell models of infection. Additionally, proliferative cells alter their gene expression in ways that are consistent with massive transcriptional rewiring, while quiescent cells were best characterized by reentry into the cell cycle. We also identified a translational control regimen consistent with mechanistic target of rapamycin (mTOR) activation in quiescent cells and, to a lesser degree, in proliferative cells. This study illustrates the utility of the method for dissection of gene expression programs simultaneously in the parasite and host.
<b>IMPORTANCE</b>
<i>Toxoplasma gondii</i>
is a single-celled parasite that has infected up to one-third of the world's population. Significant overhauls in gene expression in both the parasite and the host cell accompany parasite invasion, and a better understanding of these changes may lead to the development of new therapeutic agents. In this study, we employed ribosome profiling to determine the changes that occur at the levels of transcription and translation in both the parasite and the infected host cell at the same time. We discovered features of
<i>Toxoplasma</i>
mRNAs that suggest a means for controlling parasite gene expression under stressful conditions. We also show that differences in host gene expression occur depending on whether they are confluent or not. Our findings demonstrate the feasibility of using ribosomal profiling to interrogate the host-parasite dynamic under a variety of conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31167946</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00292-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00292-19</ELocationID>
<Abstract>
<AbstractText>
<i>Toxoplasma gondii</i>
is a ubiquitous obligate intracellular parasite that infects the nucleated cells of warm-blooded animals. From within the parasitophorous vacuole in which they reside,
<i>Toxoplasma</i>
tachyzoites secrete an arsenal of effector proteins that can reprogram host gene expression to facilitate parasite survival and replication. Gaining a better understanding of how host gene expression is altered upon infection is central for understanding parasite strategies for host invasion and for developing new parasite therapies. Here, we applied ribosome profiling coupled with mRNA measurements to concurrently study gene expression in the parasite and in host human foreskin fibroblasts. By examining the parasite transcriptome and translatome, we identified potential upstream open reading frames that may permit the stress-induced preferential translation of parasite mRNAs. We also determined that tachyzoites reduce host death-associated pathways and increase survival, proliferation, and motility in both quiescent and proliferative host cell models of infection. Additionally, proliferative cells alter their gene expression in ways that are consistent with massive transcriptional rewiring, while quiescent cells were best characterized by reentry into the cell cycle. We also identified a translational control regimen consistent with mechanistic target of rapamycin (mTOR) activation in quiescent cells and, to a lesser degree, in proliferative cells. This study illustrates the utility of the method for dissection of gene expression programs simultaneously in the parasite and host.
<b>IMPORTANCE</b>
<i>Toxoplasma gondii</i>
is a single-celled parasite that has infected up to one-third of the world's population. Significant overhauls in gene expression in both the parasite and the host cell accompany parasite invasion, and a better understanding of these changes may lead to the development of new therapeutic agents. In this study, we employed ribosome profiling to determine the changes that occur at the levels of transcription and translation in both the parasite and the infected host cell at the same time. We discovered features of
<i>Toxoplasma</i>
mRNAs that suggest a means for controlling parasite gene expression under stressful conditions. We also show that differences in host gene expression occur depending on whether they are confluent or not. Our findings demonstrate the feasibility of using ribosomal profiling to interrogate the host-parasite dynamic under a variety of conditions.</AbstractText>
<CopyrightInformation>Copyright © 2019 Holmes et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Holmes</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Premal</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Rutgers University, Piscataway, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wek</LastName>
<ForeName>Ronald C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sullivan</LastName>
<ForeName>William J</ForeName>
<Initials>WJ</Initials>
<Suffix>Jr</Suffix>
<Identifier Source="ORCID">0000-0003-1823-8642</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA rwek@iu.edu wjsulliv@iu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM124976</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014122" MajorTopicYN="N">Toxoplasma</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Toxoplasma </Keyword>
<Keyword MajorTopicYN="Y">apicomplexa</Keyword>
<Keyword MajorTopicYN="Y">parasites</Keyword>
<Keyword MajorTopicYN="Y">ribosomal profiling</Keyword>
<Keyword MajorTopicYN="Y">translation</Keyword>
<Keyword MajorTopicYN="Y">translation control</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31167946</ArticleId>
<ArticleId IdType="pii">4/3/e00292-19</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00292-19</ArticleId>
<ArticleId IdType="pmc">PMC6553554</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Int. 1999 Mar;48(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11269320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Feb 15;30(4):523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2019 Jun 13;15(6):e1007746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31194856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 1994 Aug;48(2):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7527323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasite Immunol. 2015 Mar;37(3):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25408224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Jul;12(7):979-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23666622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2016 Dec 26;2016:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28025344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 4;7(1):10331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28871121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:463-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26332089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2015 Oct;21(10):1731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26286745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2018 Jul;75(13):2355-2373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29602951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2018 Aug 22;86(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29967092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Aug 12;291(33):16927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27358398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 1994;45:27-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7707991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 May;10(5):1153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 11;147(4):789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22056041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Nov 22;14(11):R128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24267660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jun 1;33(11):1735-1737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28158331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1997 Sep;110 ( Pt 17):2117-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9378762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korean J Parasitol. 2018 Apr;56(2):135-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29742868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2017 Jul;30(3):615-645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28404792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2017 Aug 15;126:112-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28579404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Apr 29;12(4):e1001845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2015 Aug;202(2):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26393539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSystems. 2018 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30505948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Interface Focus. 2014 Jun 6;4(3):20130074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Dec 10;3:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25493618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Nutr. 2012 May 01;3(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22585904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 3;7(1):7229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28775382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Oct 25;11:603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Parasitol. 2012 Apr;98(2):445-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22010783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jun 09;16:443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26054634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2015 May 30;2(6):178-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28362004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2016;13(3):316-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26821742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13574-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Apr;10(4):908-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1757:69-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29761457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;490:333-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Apr 21;125(2):261-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2017 Dec;33(12):947-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28942109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):e134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Dec 11;18(1):961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29228904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Jun;11(6):983-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Apr;42(6):3623-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24442674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Holmes, Michael J" sort="Holmes, Michael J" uniqKey="Holmes M" first="Michael J" last="Holmes">Michael J. Holmes</name>
</region>
<name sortKey="Holmes, Michael J" sort="Holmes, Michael J" uniqKey="Holmes M" first="Michael J" last="Holmes">Michael J. Holmes</name>
<name sortKey="Shah, Premal" sort="Shah, Premal" uniqKey="Shah P" first="Premal" last="Shah">Premal Shah</name>
<name sortKey="Sullivan, William J" sort="Sullivan, William J" uniqKey="Sullivan W" first="William J" last="Sullivan">William J. Sullivan</name>
<name sortKey="Sullivan, William J" sort="Sullivan, William J" uniqKey="Sullivan W" first="William J" last="Sullivan">William J. Sullivan</name>
<name sortKey="Wek, Ronald C" sort="Wek, Ronald C" uniqKey="Wek R" first="Ronald C" last="Wek">Ronald C. Wek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000234 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000234 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31167946
   |texte=   Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31167946" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020